The pattern of standing waves formed on a stretched string at two instants of time (extreme, mean) are shown in figure. The velocity of two waves superimposing to form stationary waves is $360\, ms^{-1}$ and their frequencies are $256\, Hz$. Which is not possible value of $t$ (in $\sec$) :-
$9.8 × 10^{-4}$
$10^{-3}$
$2.9 × 10^{-3}$
$4.9 × 10^{-3}$
A string of mass $2.5\, kg$ under some tension. The length of the stretched string is $20\, m$. If the transverse jerk produced at one end of the string takes $0.5\, s$ to reach the other end, tension in the string is .... $N$
The displacement $y$ of a wave travelling in the $x-$ direction is given by $y = {10^{ - 4}}\sin \left( {600t - 2x+\frac{\pi }{3}} \right)$ metre, where $x$ is expressed in metres and $t$ in seconds. The speed of the wave in $ms^{-1}$, is
A uniform rope of length $L$ and mass $m_1$ hangs vertically from a rigid support. A block of mass $m_2$ is attached to the free end of the rope. A transverse pulse of wavelength $\lambda _1$ is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is $\lambda _2$ . The ratio $\lambda _2/\lambda _1$ is
Three waves of equal frequency having amplitudes $10\,\mu m$, $4\,\mu m$, $7\,\mu m$ arrive at a given point with successive phase difference of $\pi /2$, the amplitude the resulting wave in $\mu m$ is given by
Speed of sound waves in a fluid depends upon